Implement learning a text classifier from collective data

This commit is contained in:
Eike Kettner
2020-09-01 07:50:21 +02:00
parent 68bb65572b
commit 316b490008
5 changed files with 130 additions and 18 deletions

View File

@ -26,7 +26,7 @@ final class StanfordTextClassifier[F[_]: Sync: ContextShift](
.use { dir =>
for {
rawData <- writeDataFile(blocker, dir, data)
_ <- logger.debug(s"Learning from ${rawData.count} items.")
_ <- logger.info(s"Learning from ${rawData.count} items.")
trainData <- splitData(logger, rawData)
scores <- cfg.classifierConfigs.traverse(m => train(logger, trainData, m))
sorted = scores.sortBy(-_.score)
@ -43,7 +43,7 @@ final class StanfordTextClassifier[F[_]: Sync: ContextShift](
val cls = ColumnDataClassifier.getClassifier(
model.model.normalize().toAbsolutePath().toString()
)
val cat = cls.classOf(cls.makeDatumFromLine(normalisedText(text)))
val cat = cls.classOf(cls.makeDatumFromLine("\t\t" + normalisedText(text)))
Option(cat)
}
@ -66,7 +66,7 @@ final class StanfordTextClassifier[F[_]: Sync: ContextShift](
} yield res
def splitData(logger: Logger[F], in: RawData): F[TrainData] = {
val nTest = (in.count * 0.25).toLong
val nTest = (in.count * 0.15).toLong
val td =
TrainData(in.file.resolveSibling("train.txt"), in.file.resolveSibling("test.txt"))
@ -106,9 +106,10 @@ final class StanfordTextClassifier[F[_]: Sync: ContextShift](
counter <- Ref.of[F, Long](0L)
_ <-
data
.map(d => s"${d.cls}\t${d.ref}\t${normalisedText(d.text)}")
.filter(_.text.nonEmpty)
.map(d => s"${d.cls}\t${fixRef(d.ref)}\t${normalisedText(d.text)}")
.evalTap(_ => counter.update(_ + 1))
.intersperse("\n")
.intersperse("\r\n")
.through(fs2.text.utf8Encode)
.through(fs2.io.file.writeAll(target, blocker))
.compile
@ -119,13 +120,16 @@ final class StanfordTextClassifier[F[_]: Sync: ContextShift](
}
def normalisedText(text: String): String =
text.replaceAll("[\n\t]+", " ")
text.replaceAll("[\n\r\t]+", " ")
def fixRef(str: String): String =
str.replace('\t', '_')
def amendProps(
trainData: TrainData,
props: Map[String, String]
): Map[String, String] =
prepend("2", props) ++ Map(
prepend("2.", props) ++ Map(
"trainFile" -> trainData.train.normalize().toAbsolutePath().toString(),
"testFile" -> trainData.test.normalize().toAbsolutePath().toString(),
"serializeTo" -> trainData.modelFile.normalize().toAbsolutePath().toString()