Choose nlp mode in config file

This commit is contained in:
Eike Kettner
2021-01-14 00:55:19 +01:00
parent 54a09861c4
commit aa937797be
6 changed files with 95 additions and 19 deletions

View File

@ -1,14 +1,17 @@
package docspell.analysis
import cats.Applicative
import cats.effect._
import cats.implicits._
import docspell.analysis.classifier.{StanfordTextClassifier, TextClassifier}
import docspell.analysis.contact.Contact
import docspell.analysis.date.DateFind
import docspell.analysis.nlp.{PipelineCache, StanfordNerAnnotator, StanfordNerSettings}
import docspell.analysis.nlp._
import docspell.common._
import edu.stanford.nlp.pipeline.StanfordCoreNLP
trait TextAnalyser[F[_]] {
def annotate(
@ -33,8 +36,8 @@ object TextAnalyser {
blocker: Blocker
): Resource[F, TextAnalyser[F]] =
Resource
.liftF(PipelineCache.full(cfg.clearStanfordPipelineInterval))
.map(cache =>
.liftF(Nlp(cfg.nlpConfig))
.map(stanfordNer =>
new TextAnalyser[F] {
def annotate(
logger: Logger[F],
@ -44,7 +47,7 @@ object TextAnalyser {
): F[TextAnalyser.Result] =
for {
input <- textLimit(logger, text)
tags0 <- stanfordNer(cacheKey, settings, input)
tags0 <- stanfordNer(Nlp.Input(cacheKey, settings, input))
tags1 <- contactNer(input)
dates <- dateNer(settings.lang, input)
list = tags0 ++ tags1
@ -62,10 +65,6 @@ object TextAnalyser {
s" Analysing only first ${cfg.maxLength} characters."
) *> text.take(cfg.maxLength).pure[F]
private def stanfordNer(key: Ident, settings: StanfordNerSettings, text: String)
: F[Vector[NerLabel]] =
StanfordNerAnnotator.nerAnnotate[F](key.id, cache)(settings, text)
private def contactNer(text: String): F[Vector[NerLabel]] =
Sync[F].delay {
Contact.annotate(text)
@ -78,4 +77,31 @@ object TextAnalyser {
}
)
private object Nlp {
def apply[F[_]: Concurrent: Timer: BracketThrow](
cfg: TextAnalysisConfig.NlpConfig
): F[Input => F[Vector[NerLabel]]] =
cfg.mode match {
case NlpMode.Full =>
PipelineCache.full(cfg.clearInterval).map(cache => full(cache))
case NlpMode.Basic =>
PipelineCache.basic(cfg.clearInterval).map(cache => basic(cache))
case NlpMode.Disabled =>
Applicative[F].pure(_ => Vector.empty[NerLabel].pure[F])
}
final case class Input(key: Ident, settings: StanfordNerSettings, text: String)
def full[F[_]: BracketThrow](
cache: PipelineCache[F, StanfordCoreNLP]
)(input: Input): F[Vector[NerLabel]] =
StanfordNerAnnotator.nerAnnotate(input.key.id, cache)(input.settings, input.text)
def basic[F[_]: BracketThrow](
cache: PipelineCache[F, BasicCRFAnnotator.Annotator]
)(input: Input): F[Vector[NerLabel]] =
BasicCRFAnnotator.nerAnnotate(input.key.id, cache)(input.settings, input.text)
}
}

View File

@ -1,10 +1,16 @@
package docspell.analysis
import docspell.analysis.TextAnalysisConfig.NlpConfig
import docspell.analysis.classifier.TextClassifierConfig
import docspell.common._
case class TextAnalysisConfig(
maxLength: Int,
clearStanfordPipelineInterval: Duration,
nlpConfig: NlpConfig,
classifier: TextClassifierConfig
)
object TextAnalysisConfig {
case class NlpConfig(clearInterval: Duration, mode: NlpMode)
}