Reorganize nlp pipeline and add nlp-unsupported language italian

Improves and reorganizes how nlp pipelines are setup. Now users can
choose from many options, depending on their hardware and usage
scenario.

This is the base to use more languages without depending on what
stanford-nlp supports. Support then is involves to text extraction and
simple regex-ner processing.
This commit is contained in:
Eike Kettner 2021-01-16 23:43:24 +01:00
parent a70e9ab614
commit f01646aeb5
29 changed files with 676 additions and 255 deletions

View File

@ -24,4 +24,4 @@ before_script:
- export TZ=Europe/Berlin - export TZ=Europe/Berlin
script: script:
- sbt ++$TRAVIS_SCALA_VERSION ";project root ;scalafmtCheckAll ;make ;test" - sbt -J-XX:+UseG1GC ++$TRAVIS_SCALA_VERSION ";project root ;scalafmtCheckAll ;make ;test"

View File

@ -15,6 +15,7 @@ RUN apk add --no-cache openjdk11-jre \
tesseract-ocr \ tesseract-ocr \
tesseract-ocr-data-deu \ tesseract-ocr-data-deu \
tesseract-ocr-data-fra \ tesseract-ocr-data-fra \
tesseract-ocr-data-ita \
unpaper \ unpaper \
wkhtmltopdf \ wkhtmltopdf \
libreoffice \ libreoffice \

View File

@ -0,0 +1,7 @@
package docspell.analysis
import java.nio.file.Path
import docspell.common._
case class NlpSettings(lang: Language, highRecall: Boolean, regexNer: Option[Path])

View File

@ -10,13 +10,13 @@ import docspell.analysis.date.DateFind
import docspell.analysis.nlp._ import docspell.analysis.nlp._
import docspell.common._ import docspell.common._
import edu.stanford.nlp.pipeline.StanfordCoreNLP import org.log4s.getLogger
trait TextAnalyser[F[_]] { trait TextAnalyser[F[_]] {
def annotate( def annotate(
logger: Logger[F], logger: Logger[F],
settings: StanfordNerSettings, settings: NlpSettings,
cacheKey: Ident, cacheKey: Ident,
text: String text: String
): F[TextAnalyser.Result] ): F[TextAnalyser.Result]
@ -24,6 +24,7 @@ trait TextAnalyser[F[_]] {
def classifier: TextClassifier[F] def classifier: TextClassifier[F]
} }
object TextAnalyser { object TextAnalyser {
private[this] val logger = getLogger
case class Result(labels: Vector[NerLabel], dates: Vector[NerDateLabel]) { case class Result(labels: Vector[NerLabel], dates: Vector[NerDateLabel]) {
@ -41,13 +42,13 @@ object TextAnalyser {
new TextAnalyser[F] { new TextAnalyser[F] {
def annotate( def annotate(
logger: Logger[F], logger: Logger[F],
settings: StanfordNerSettings, settings: NlpSettings,
cacheKey: Ident, cacheKey: Ident,
text: String text: String
): F[TextAnalyser.Result] = ): F[TextAnalyser.Result] =
for { for {
input <- textLimit(logger, text) input <- textLimit(logger, text)
tags0 <- stanfordNer(Nlp.Input(cacheKey, settings, input)) tags0 <- stanfordNer(Nlp.Input(cacheKey, settings, logger, input))
tags1 <- contactNer(input) tags1 <- contactNer(input)
dates <- dateNer(settings.lang, input) dates <- dateNer(settings.lang, input)
list = tags0 ++ tags1 list = tags0 ++ tags1
@ -77,31 +78,36 @@ object TextAnalyser {
} }
) )
/** Provides the nlp pipeline based on the configuration. */
private object Nlp { private object Nlp {
def apply[F[_]: Concurrent: Timer: BracketThrow]( def apply[F[_]: Concurrent: Timer: BracketThrow](
cfg: TextAnalysisConfig.NlpConfig cfg: TextAnalysisConfig.NlpConfig
): F[Input => F[Vector[NerLabel]]] = ): F[Input[F] => F[Vector[NerLabel]]] =
cfg.mode match { cfg.mode match {
case NlpMode.Full =>
PipelineCache.full(cfg.clearInterval).map(cache => full(cache))
case NlpMode.Basic =>
PipelineCache.basic(cfg.clearInterval).map(cache => basic(cache))
case NlpMode.Disabled => case NlpMode.Disabled =>
Applicative[F].pure(_ => Vector.empty[NerLabel].pure[F]) Logger.log4s(logger).info("NLP is disabled as defined in config.") *>
Applicative[F].pure(_ => Vector.empty[NerLabel].pure[F])
case _ =>
PipelineCache(cfg.clearInterval)(
Annotator[F](cfg.mode),
Annotator.clearCaches[F]
)
.map(annotate[F])
} }
final case class Input(key: Ident, settings: StanfordNerSettings, text: String) final case class Input[F[_]](
key: Ident,
settings: NlpSettings,
logger: Logger[F],
text: String
)
def full[F[_]: BracketThrow]( def annotate[F[_]: BracketThrow](
cache: PipelineCache[F, StanfordCoreNLP] cache: PipelineCache[F]
)(input: Input): F[Vector[NerLabel]] = )(input: Input[F]): F[Vector[NerLabel]] =
StanfordNerAnnotator.nerAnnotate(input.key.id, cache)(input.settings, input.text) cache
.obtain(input.key.id, input.settings)
def basic[F[_]: BracketThrow]( .use(ann => ann.nerAnnotate(input.logger)(input.text))
cache: PipelineCache[F, BasicCRFAnnotator.Annotator]
)(input: Input): F[Vector[NerLabel]] =
BasicCRFAnnotator.nerAnnotate(input.key.id, cache)(input.settings, input.text)
} }
} }

View File

@ -41,23 +41,30 @@ object DateFind {
} }
object SimpleDate { object SimpleDate {
val p0 = (readYear >> readMonth >> readDay).map { case ((y, m), d) => def pattern0(lang: Language) = (readYear >> readMonth(lang) >> readDay).map {
List(SimpleDate(y, m, d)) case ((y, m), d) =>
List(SimpleDate(y, m, d))
} }
val p1 = (readDay >> readMonth >> readYear).map { case ((d, m), y) => def pattern1(lang: Language) = (readDay >> readMonth(lang) >> readYear).map {
List(SimpleDate(y, m, d)) case ((d, m), y) =>
List(SimpleDate(y, m, d))
} }
val p2 = (readMonth >> readDay >> readYear).map { case ((m, d), y) => def pattern2(lang: Language) = (readMonth(lang) >> readDay >> readYear).map {
List(SimpleDate(y, m, d)) case ((m, d), y) =>
List(SimpleDate(y, m, d))
} }
// ymd , ydm, dmy , dym, myd, mdy // ymd , ydm, dmy , dym, myd, mdy
def fromParts(parts: List[Word], lang: Language): List[SimpleDate] = { def fromParts(parts: List[Word], lang: Language): List[SimpleDate] = {
val p0 = pattern0(lang)
val p1 = pattern1(lang)
val p2 = pattern2(lang)
val p = lang match { val p = lang match {
case Language.English => case Language.English =>
p2.alt(p1).map(t => t._1 ++ t._2).or(p2).or(p0).or(p1) p2.alt(p1).map(t => t._1 ++ t._2).or(p2).or(p0).or(p1)
case Language.German => p1.or(p0).or(p2) case Language.German => p1.or(p0).or(p2)
case Language.French => p1.or(p0).or(p2) case Language.French => p1.or(p0).or(p2)
case Language.Italian => p1.or(p0).or(p2)
} }
p.read(parts) match { p.read(parts) match {
case Result.Success(sds, _) => case Result.Success(sds, _) =>
@ -76,9 +83,11 @@ object DateFind {
} }
) )
def readMonth: Reader[Int] = def readMonth(lang: Language): Reader[Int] =
Reader.readFirst(w => Reader.readFirst(w =>
Some(months.indexWhere(_.contains(w.value))).filter(_ >= 0).map(_ + 1) Some(MonthName.getAll(lang).indexWhere(_.contains(w.value)))
.filter(_ >= 0)
.map(_ + 1)
) )
def readDay: Reader[Int] = def readDay: Reader[Int] =
@ -150,20 +159,5 @@ object DateFind {
Failure Failure
} }
} }
private val months = List(
List("jan", "january", "januar", "01"),
List("feb", "february", "februar", "02"),
List("mar", "march", "märz", "marz", "03"),
List("apr", "april", "04"),
List("may", "mai", "05"),
List("jun", "june", "juni", "06"),
List("jul", "july", "juli", "07"),
List("aug", "august", "08"),
List("sep", "september", "09"),
List("oct", "october", "oktober", "10"),
List("nov", "november", "11"),
List("dec", "december", "dezember", "12")
)
} }
} }

View File

@ -0,0 +1,101 @@
package docspell.analysis.date
import docspell.common.Language
object MonthName {
def getAll(lang: Language): List[List[String]] =
merge(numbers, forLang(lang))
private def merge(n0: List[List[String]], ns: List[List[String]]*): List[List[String]] =
ns.foldLeft(n0) { (res, el) =>
res.zip(el).map({ case (a, b) => a ++ b })
}
private def forLang(lang: Language): List[List[String]] =
lang match {
case Language.English =>
english
case Language.German =>
german
case Language.French =>
french
case Language.Italian =>
italian
}
private val numbers = List(
List("01"),
List("02"),
List("03"),
List("04"),
List("05"),
List("06"),
List("07"),
List("08"),
List("09"),
List("10"),
List("11"),
List("12")
)
private val english = List(
List("jan", "january"),
List("feb", "february"),
List("mar", "march"),
List("apr", "april"),
List("may"),
List("jun", "june"),
List("jul", "july"),
List("aug", "august"),
List("sept", "september"),
List("oct", "october"),
List("nov", "november"),
List("dec", "december")
)
private val german = List(
List("jan", "januar"),
List("feb", "februar"),
List("märz"),
List("apr", "april"),
List("mai"),
List("juni"),
List("juli"),
List("aug", "august"),
List("sept", "september"),
List("okt", "oktober"),
List("nov", "november"),
List("dez", "dezember")
)
private val french = List(
List("janv", "janvier"),
List("févr", "fevr", "février", "fevrier"),
List("mars"),
List("avril"),
List("mai"),
List("juin"),
List("juil", "juillet"),
List("aout", "août"),
List("sept", "septembre"),
List("oct", "octobre"),
List("nov", "novembre"),
List("dec", "déc", "décembre", "decembre")
)
private val italian = List(
List("genn", "gennaio"),
List("febbr", "febbraio"),
List("mar", "marzo"),
List("apr", "aprile"),
List("magg", "maggio"),
List("giugno"),
List("luglio"),
List("ag", "agosto"),
List("sett", "settembre"),
List("ott", "ottobre"),
List("nov", "novembre"),
List("dic", "dicembre")
)
}

View File

@ -0,0 +1,98 @@
package docspell.analysis.nlp
import cats.effect.Sync
import cats.implicits._
import cats.{Applicative, FlatMap}
import docspell.analysis.NlpSettings
import docspell.common._
import edu.stanford.nlp.pipeline.StanfordCoreNLP
/** Analyses a text to mark certain parts with a `NerLabel`. */
trait Annotator[F[_]] { self =>
def nerAnnotate(logger: Logger[F])(text: String): F[Vector[NerLabel]]
def ++(next: Annotator[F])(implicit F: FlatMap[F]): Annotator[F] =
new Annotator[F] {
def nerAnnotate(logger: Logger[F])(text: String): F[Vector[NerLabel]] =
for {
n0 <- self.nerAnnotate(logger)(text)
n1 <- next.nerAnnotate(logger)(text)
} yield (n0 ++ n1).distinct
}
}
object Annotator {
/** Creates an annotator according to the given `mode` and `settings`.
*
* There are the following ways:
*
* - disabled: it returns a no-op annotator that always gives an empty list
* - full: the complete stanford pipeline is used
* - basic: only the ner classifier is used
*
* Additionally, if there is a regexNer-file specified, the regexner annotator is
* also run. In case the full pipeline is used, this is already included.
*/
def apply[F[_]: Sync](mode: NlpMode)(settings: NlpSettings): Annotator[F] =
mode match {
case NlpMode.Disabled =>
Annotator.none[F]
case NlpMode.Full =>
StanfordNerSettings.fromNlpSettings(settings) match {
case Some(ss) =>
Annotator.pipeline(StanfordNerAnnotator.makePipeline(ss))
case None =>
Annotator.none[F]
}
case NlpMode.Basic =>
StanfordNerSettings.fromNlpSettings(settings) match {
case Some(StanfordNerSettings.Full(lang, _, Some(file))) =>
Annotator.basic(BasicCRFAnnotator.Cache.getAnnotator(lang)) ++
Annotator.pipeline(StanfordNerAnnotator.regexNerPipeline(file))
case Some(StanfordNerSettings.Full(lang, _, None)) =>
Annotator.basic(BasicCRFAnnotator.Cache.getAnnotator(lang))
case Some(StanfordNerSettings.RegexOnly(file)) =>
Annotator.pipeline(StanfordNerAnnotator.regexNerPipeline(file))
case None =>
Annotator.none[F]
}
case NlpMode.RegexOnly =>
settings.regexNer match {
case Some(file) =>
Annotator.pipeline(StanfordNerAnnotator.regexNerPipeline(file))
case None =>
Annotator.none[F]
}
}
def none[F[_]: Applicative]: Annotator[F] =
new Annotator[F] {
def nerAnnotate(logger: Logger[F])(text: String): F[Vector[NerLabel]] =
logger.debug("Running empty annotator. NLP not supported.") *>
Vector.empty[NerLabel].pure[F]
}
def basic[F[_]: Sync](ann: BasicCRFAnnotator.Annotator): Annotator[F] =
new Annotator[F] {
def nerAnnotate(logger: Logger[F])(text: String): F[Vector[NerLabel]] =
Sync[F].delay(
BasicCRFAnnotator.nerAnnotate(ann)(text)
)
}
def pipeline[F[_]: Sync](cp: StanfordCoreNLP): Annotator[F] =
new Annotator[F] {
def nerAnnotate(logger: Logger[F])(text: String): F[Vector[NerLabel]] =
Sync[F].delay(StanfordNerAnnotator.nerAnnotate(cp, text))
}
def clearCaches[F[_]: Sync]: F[Unit] =
Sync[F].delay {
StanfordCoreNLP.clearAnnotatorPool()
BasicCRFAnnotator.Cache.clearCache()
}
}

View File

@ -7,9 +7,7 @@ import java.util.zip.GZIPInputStream
import scala.jdk.CollectionConverters._ import scala.jdk.CollectionConverters._
import scala.util.Using import scala.util.Using
import cats.Applicative import docspell.common.Language.NLPLanguage
import cats.effect.BracketThrow
import docspell.common._ import docspell.common._
import edu.stanford.nlp.ie.AbstractSequenceClassifier import edu.stanford.nlp.ie.AbstractSequenceClassifier
@ -30,14 +28,6 @@ object BasicCRFAnnotator {
type Annotator = AbstractSequenceClassifier[CoreLabel] type Annotator = AbstractSequenceClassifier[CoreLabel]
def nerAnnotate[F[_]: BracketThrow](
cacheKey: String,
cache: PipelineCache[F, Annotator]
)(settings: StanfordNerSettings, text: String): F[Vector[NerLabel]] =
cache
.obtain(cacheKey, settings)
.use(crf => Applicative[F].pure(nerAnnotate(crf)(text)))
def nerAnnotate(nerClassifier: Annotator)(text: String): Vector[NerLabel] = def nerAnnotate(nerClassifier: Annotator)(text: String): Vector[NerLabel] =
nerClassifier nerClassifier
.classify(text) .classify(text)
@ -52,7 +42,7 @@ object BasicCRFAnnotator {
}) })
.toVector .toVector
private def makeClassifier(lang: Language): Annotator = { def makeAnnotator(lang: NLPLanguage): Annotator = {
logger.info(s"Creating ${lang.name} Stanford NLP NER-only classifier...") logger.info(s"Creating ${lang.name} Stanford NLP NER-only classifier...")
val ner = classifierResource(lang) val ner = classifierResource(lang)
Using(new GZIPInputStream(ner.openStream())) { in => Using(new GZIPInputStream(ner.openStream())) { in =>
@ -60,7 +50,7 @@ object BasicCRFAnnotator {
}.fold(throw _, identity) }.fold(throw _, identity)
} }
private def classifierResource(lang: Language): URL = { private def classifierResource(lang: NLPLanguage): URL = {
def check(name: String): URL = def check(name: String): URL =
Option(getClass.getResource(name)) match { Option(getClass.getResource(name)) match {
case None => case None =>
@ -79,11 +69,11 @@ object BasicCRFAnnotator {
} }
final class Cache { final class Cache {
private[this] lazy val germanNerClassifier = makeClassifier(Language.German) private[this] lazy val germanNerClassifier = makeAnnotator(Language.German)
private[this] lazy val englishNerClassifier = makeClassifier(Language.English) private[this] lazy val englishNerClassifier = makeAnnotator(Language.English)
private[this] lazy val frenchNerClassifier = makeClassifier(Language.French) private[this] lazy val frenchNerClassifier = makeAnnotator(Language.French)
def forLang(language: Language): Annotator = def forLang(language: NLPLanguage): Annotator =
language match { language match {
case Language.French => frenchNerClassifier case Language.French => frenchNerClassifier
case Language.German => germanNerClassifier case Language.German => germanNerClassifier
@ -95,7 +85,7 @@ object BasicCRFAnnotator {
private[this] val cacheRef = new AtomicReference[Cache](new Cache) private[this] val cacheRef = new AtomicReference[Cache](new Cache)
def getAnnotator(language: Language): Annotator = def getAnnotator(language: NLPLanguage): Annotator =
cacheRef.get().forLang(language) cacheRef.get().forLang(language)
def clearCache(): Unit = def clearCache(): Unit =

View File

@ -3,14 +3,13 @@ package docspell.analysis.nlp
import scala.concurrent.duration.{Duration => _, _} import scala.concurrent.duration.{Duration => _, _}
import cats.Applicative import cats.Applicative
import cats.data.Kleisli
import cats.effect._ import cats.effect._
import cats.effect.concurrent.Ref import cats.effect.concurrent.Ref
import cats.implicits._ import cats.implicits._
import docspell.analysis.NlpSettings
import docspell.common._ import docspell.common._
import edu.stanford.nlp.pipeline.StanfordCoreNLP
import org.log4s.getLogger import org.log4s.getLogger
/** Creating the StanfordCoreNLP pipeline is quite expensive as it /** Creating the StanfordCoreNLP pipeline is quite expensive as it
@ -20,58 +19,32 @@ import org.log4s.getLogger
* *
* **This is an internal API** * **This is an internal API**
*/ */
trait PipelineCache[F[_], A] { trait PipelineCache[F[_]] {
def obtain(key: String, settings: StanfordNerSettings): Resource[F, A] def obtain(key: String, settings: NlpSettings): Resource[F, Annotator[F]]
} }
object PipelineCache { object PipelineCache {
private[this] val logger = getLogger private[this] val logger = getLogger
def none[F[_]: Applicative, A]( def apply[F[_]: Concurrent: Timer](clearInterval: Duration)(
creator: Kleisli[F, StanfordNerSettings, A] creator: NlpSettings => Annotator[F],
): PipelineCache[F, A] =
new PipelineCache[F, A] {
def obtain(
ignored: String,
settings: StanfordNerSettings
): Resource[F, A] =
Resource.liftF(creator.run(settings))
}
def apply[F[_]: Concurrent: Timer, A](clearInterval: Duration)(
creator: StanfordNerSettings => A,
release: F[Unit] release: F[Unit]
): F[PipelineCache[F, A]] = ): F[PipelineCache[F]] =
for { for {
data <- Ref.of(Map.empty[String, Entry[A]]) data <- Ref.of(Map.empty[String, Entry[Annotator[F]]])
cacheClear <- CacheClearing.create(data, clearInterval, release) cacheClear <- CacheClearing.create(data, clearInterval, release)
} yield new Impl[F, A](data, creator, cacheClear) _ <- Logger.log4s(logger).info("Creating nlp pipeline cache")
} yield new Impl[F](data, creator, cacheClear)
def full[F[_]: Concurrent: Timer]( final private class Impl[F[_]: Sync](
clearInterval: Duration data: Ref[F, Map[String, Entry[Annotator[F]]]],
): F[PipelineCache[F, StanfordCoreNLP]] = creator: NlpSettings => Annotator[F],
apply(clearInterval)(
StanfordNerAnnotator.makePipeline,
StanfordNerAnnotator.clearPipelineCaches
)
def basic[F[_]: Concurrent: Timer](
clearInterval: Duration
): F[PipelineCache[F, BasicCRFAnnotator.Annotator]] =
apply(clearInterval)(
settings => BasicCRFAnnotator.Cache.getAnnotator(settings.lang),
Sync[F].delay(BasicCRFAnnotator.Cache.clearCache())
)
final private class Impl[F[_]: Sync, A](
data: Ref[F, Map[String, Entry[A]]],
creator: StanfordNerSettings => A,
cacheClear: CacheClearing[F] cacheClear: CacheClearing[F]
) extends PipelineCache[F, A] { ) extends PipelineCache[F] {
def obtain(key: String, settings: StanfordNerSettings): Resource[F, A] = def obtain(key: String, settings: NlpSettings): Resource[F, Annotator[F]] =
for { for {
_ <- cacheClear.withCache _ <- cacheClear.withCache
id <- Resource.liftF(makeSettingsId(settings)) id <- Resource.liftF(makeSettingsId(settings))
@ -83,10 +56,10 @@ object PipelineCache {
private def getOrCreate( private def getOrCreate(
key: String, key: String,
id: String, id: String,
cache: Map[String, Entry[A]], cache: Map[String, Entry[Annotator[F]]],
settings: StanfordNerSettings, settings: NlpSettings,
creator: StanfordNerSettings => A creator: NlpSettings => Annotator[F]
): (Map[String, Entry[A]], A) = ): (Map[String, Entry[Annotator[F]]], Annotator[F]) =
cache.get(key) match { cache.get(key) match {
case Some(entry) => case Some(entry) =>
if (entry.id == id) (cache, entry.value) if (entry.id == id) (cache, entry.value)
@ -105,7 +78,7 @@ object PipelineCache {
(cache.updated(key, e), nlp) (cache.updated(key, e), nlp)
} }
private def makeSettingsId(settings: StanfordNerSettings): F[String] = { private def makeSettingsId(settings: NlpSettings): F[String] = {
val base = settings.copy(regexNer = None).toString val base = settings.copy(regexNer = None).toString
val size: F[Long] = val size: F[Long] =
settings.regexNer match { settings.regexNer match {

View File

@ -1,9 +1,11 @@
package docspell.analysis.nlp package docspell.analysis.nlp
import java.nio.file.Path
import java.util.{Properties => JProps} import java.util.{Properties => JProps}
import docspell.analysis.nlp.Properties.Implicits._ import docspell.analysis.nlp.Properties.Implicits._
import docspell.common._ import docspell.common._
import docspell.common.syntax.FileSyntax._
object Properties { object Properties {
@ -17,18 +19,21 @@ object Properties {
p p
} }
def forSettings(settings: StanfordNerSettings): JProps = { def forSettings(settings: StanfordNerSettings): JProps =
val regexNerFile = settings.regexNer settings match {
.map(p => p.normalize().toAbsolutePath().toString()) case StanfordNerSettings.Full(lang, highRecall, regexNer) =>
settings.lang match { val regexNerFile = regexNer.map(p => p.absolutePathAsString)
case Language.German => lang match {
Properties.nerGerman(regexNerFile, settings.highRecall) case Language.German =>
case Language.English => Properties.nerGerman(regexNerFile, highRecall)
Properties.nerEnglish(regexNerFile) case Language.English =>
case Language.French => Properties.nerEnglish(regexNerFile)
Properties.nerFrench(regexNerFile, settings.highRecall) case Language.French =>
Properties.nerFrench(regexNerFile, highRecall)
}
case StanfordNerSettings.RegexOnly(path) =>
Properties.regexNerOnly(path)
} }
}
def nerGerman(regexNerMappingFile: Option[String], highRecall: Boolean): JProps = def nerGerman(regexNerMappingFile: Option[String], highRecall: Boolean): JProps =
Properties( Properties(
@ -76,6 +81,11 @@ object Properties {
"ner.model" -> "edu/stanford/nlp/models/ner/french-wikiner-4class.crf.ser.gz,edu/stanford/nlp/models/ner/english.conll.4class.distsim.crf.ser.gz" "ner.model" -> "edu/stanford/nlp/models/ner/french-wikiner-4class.crf.ser.gz,edu/stanford/nlp/models/ner/english.conll.4class.distsim.crf.ser.gz"
).withRegexNer(regexNerMappingFile).withHighRecall(highRecall) ).withRegexNer(regexNerMappingFile).withHighRecall(highRecall)
def regexNerOnly(regexNerMappingFile: Path): JProps =
Properties(
"annotators" -> "tokenize,ssplit"
).withRegexNer(Some(regexNerMappingFile.absolutePathAsString))
object Implicits { object Implicits {
implicit final class JPropsOps(val p: JProps) extends AnyVal { implicit final class JPropsOps(val p: JProps) extends AnyVal {

View File

@ -1,8 +1,9 @@
package docspell.analysis.nlp package docspell.analysis.nlp
import java.nio.file.Path
import scala.jdk.CollectionConverters._ import scala.jdk.CollectionConverters._
import cats.Applicative
import cats.effect._ import cats.effect._
import docspell.common._ import docspell.common._
@ -24,24 +25,24 @@ object StanfordNerAnnotator {
* a new classifier must be created. It will then replace the * a new classifier must be created. It will then replace the
* previous one. * previous one.
*/ */
def nerAnnotate[F[_]: BracketThrow](
cacheKey: String,
cache: PipelineCache[F, StanfordCoreNLP]
)(settings: StanfordNerSettings, text: String): F[Vector[NerLabel]] =
cache
.obtain(cacheKey, settings)
.use(crf => Applicative[F].pure(nerAnnotate(crf, text)))
def nerAnnotate(nerClassifier: StanfordCoreNLP, text: String): Vector[NerLabel] = { def nerAnnotate(nerClassifier: StanfordCoreNLP, text: String): Vector[NerLabel] = {
val doc = new CoreDocument(text) val doc = new CoreDocument(text)
nerClassifier.annotate(doc) nerClassifier.annotate(doc)
doc.tokens().asScala.collect(Function.unlift(LabelConverter.toNerLabel)).toVector doc.tokens().asScala.collect(Function.unlift(LabelConverter.toNerLabel)).toVector
} }
def makePipeline(settings: StanfordNerSettings): StanfordCoreNLP = { def makePipeline(settings: StanfordNerSettings): StanfordCoreNLP =
logger.info(s"Creating ${settings.lang.name} Stanford NLP NER classifier...") settings match {
new StanfordCoreNLP(Properties.forSettings(settings)) case s: StanfordNerSettings.Full =>
} logger.info(s"Creating ${s.lang.name} Stanford NLP NER classifier...")
new StanfordCoreNLP(Properties.forSettings(settings))
case StanfordNerSettings.RegexOnly(path) =>
logger.info(s"Creating regexNer-only Stanford NLP NER classifier...")
regexNerPipeline(path)
}
def regexNerPipeline(regexNerFile: Path): StanfordCoreNLP =
new StanfordCoreNLP(Properties.regexNerOnly(regexNerFile))
def clearPipelineCaches[F[_]: Sync]: F[Unit] = def clearPipelineCaches[F[_]: Sync]: F[Unit] =
Sync[F].delay { Sync[F].delay {

View File

@ -2,25 +2,41 @@ package docspell.analysis.nlp
import java.nio.file.Path import java.nio.file.Path
import docspell.common._ import docspell.analysis.NlpSettings
import docspell.common.Language.NLPLanguage
/** Settings for configuring the stanford NER pipeline. sealed trait StanfordNerSettings
*
* The language is mandatory, only the provided ones are supported. object StanfordNerSettings {
* The `highRecall` only applies for non-English languages. For
* non-English languages the english classifier is run as second /** Settings for configuring the stanford NER pipeline.
* classifier and if `highRecall` is true, then it will be used to *
* tag untagged tokens. This may lead to a lot of false positives, * The language is mandatory, only the provided ones are supported.
* but since English is omnipresent in other languages, too it * The `highRecall` only applies for non-English languages. For
* depends on the use case for whether this is useful or not. * non-English languages the english classifier is run as second
* * classifier and if `highRecall` is true, then it will be used to
* The `regexNer` allows to specify a text file as described here: * tag untagged tokens. This may lead to a lot of false positives,
* https://nlp.stanford.edu/software/regexner.html. This will be used * but since English is omnipresent in other languages, too it
* as a last step to tag untagged tokens using the provided list of * depends on the use case for whether this is useful or not.
* regexps. *
*/ * The `regexNer` allows to specify a text file as described here:
case class StanfordNerSettings( * https://nlp.stanford.edu/software/regexner.html. This will be used
lang: Language, * as a last step to tag untagged tokens using the provided list of
highRecall: Boolean, * regexps.
regexNer: Option[Path] */
) case class Full(
lang: NLPLanguage,
highRecall: Boolean,
regexNer: Option[Path]
) extends StanfordNerSettings
/** Not all languages are supported with predefined statistical models. This allows to provide regexps only.
*/
case class RegexOnly(regexNerFile: Path) extends StanfordNerSettings
def fromNlpSettings(ns: NlpSettings): Option[StanfordNerSettings] =
NLPLanguage.all
.find(nl => nl == ns.lang)
.map(nl => Full(nl, ns.highRecall, ns.regexNer))
.orElse(ns.regexNer.map(nrf => RegexOnly(nrf)))
}

View File

@ -1,12 +1,13 @@
package docspell.analysis.nlp package docspell.analysis.nlp
import docspell.common.Language.NLPLanguage
import minitest.SimpleTestSuite import minitest.SimpleTestSuite
import docspell.files.TestFiles import docspell.files.TestFiles
import docspell.common._ import docspell.common._
object BaseCRFAnnotatorSuite extends SimpleTestSuite { object BaseCRFAnnotatorSuite extends SimpleTestSuite {
def annotate(language: Language): String => Vector[NerLabel] = def annotate(language: NLPLanguage): String => Vector[NerLabel] =
BasicCRFAnnotator.nerAnnotate(BasicCRFAnnotator.Cache.getAnnotator(language)) BasicCRFAnnotator.nerAnnotate(BasicCRFAnnotator.Cache.getAnnotator(language))
test("find english ner labels") { test("find english ner labels") {

View File

@ -1,8 +1,12 @@
package docspell.analysis.nlp package docspell.analysis.nlp
import java.nio.file.Paths
import cats.effect.IO
import minitest.SimpleTestSuite import minitest.SimpleTestSuite
import docspell.files.TestFiles import docspell.files.TestFiles
import docspell.common._ import docspell.common._
import docspell.common.syntax.FileSyntax._
import edu.stanford.nlp.pipeline.StanfordCoreNLP import edu.stanford.nlp.pipeline.StanfordCoreNLP
object StanfordNerAnnotatorSuite extends SimpleTestSuite { object StanfordNerAnnotatorSuite extends SimpleTestSuite {
@ -68,4 +72,36 @@ object StanfordNerAnnotatorSuite extends SimpleTestSuite {
assertEquals(labels, expect) assertEquals(labels, expect)
StanfordCoreNLP.clearAnnotatorPool() StanfordCoreNLP.clearAnnotatorPool()
} }
test("regexner-only annotator") {
val regexNerContent =
s"""(?i)volantino ag${"\t"}ORGANIZATION${"\t"}LOCATION,PERSON,MISC${"\t"}3
|(?i)volantino${"\t"}ORGANIZATION${"\t"}LOCATION,PERSON,MISC${"\t"}3
|(?i)ag${"\t"}ORGANIZATION${"\t"}LOCATION,PERSON,MISC${"\t"}3
|(?i)andrea rossi${"\t"}PERSON${"\t"}LOCATION,MISC${"\t"}2
|(?i)andrea${"\t"}PERSON${"\t"}LOCATION,MISC${"\t"}2
|(?i)rossi${"\t"}PERSON${"\t"}LOCATION,MISC${"\t"}2
|""".stripMargin
File
.withTempDir[IO](Paths.get("target"), "test-regex-ner")
.use { dir =>
for {
out <- File.writeString[IO](dir / "regex.txt", regexNerContent)
ann = StanfordNerAnnotator.makePipeline(StanfordNerSettings.RegexOnly(out))
labels = StanfordNerAnnotator.nerAnnotate(ann, "Hello Andrea Rossi, can you.")
_ <- IO(
assertEquals(
labels,
Vector(
NerLabel("Andrea", NerTag.Person, 6, 12),
NerLabel("Rossi", NerTag.Person, 13, 18)
)
)
)
} yield ()
}
.unsafeRunSync()
StanfordCoreNLP.clearAnnotatorPool()
}
} }

View File

@ -1,5 +1,7 @@
package docspell.common package docspell.common
import cats.data.NonEmptyList
import io.circe.{Decoder, Encoder} import io.circe.{Decoder, Encoder}
sealed trait Language { self: Product => sealed trait Language { self: Product =>
@ -11,28 +13,41 @@ sealed trait Language { self: Product =>
def iso3: String def iso3: String
val allowsNLP: Boolean = false
private[common] def allNames = private[common] def allNames =
Set(name, iso3, iso2) Set(name, iso3, iso2)
} }
object Language { object Language {
sealed trait NLPLanguage extends Language with Product {
override val allowsNLP = true
}
object NLPLanguage {
val all: NonEmptyList[NLPLanguage] = NonEmptyList.of(German, English, French)
}
case object German extends Language { case object German extends NLPLanguage {
val iso2 = "de" val iso2 = "de"
val iso3 = "deu" val iso3 = "deu"
} }
case object English extends Language { case object English extends NLPLanguage {
val iso2 = "en" val iso2 = "en"
val iso3 = "eng" val iso3 = "eng"
} }
case object French extends Language { case object French extends NLPLanguage {
val iso2 = "fr" val iso2 = "fr"
val iso3 = "fra" val iso3 = "fra"
} }
val all: List[Language] = List(German, English, French) case object Italian extends Language {
val iso2 = "it"
val iso3 = "ita"
}
val all: List[Language] = List(German, English, French, Italian)
def fromString(str: String): Either[String, Language] = { def fromString(str: String): Either[String, Language] = {
val lang = str.toLowerCase val lang = str.toLowerCase

View File

@ -6,16 +6,18 @@ sealed trait NlpMode { self: Product =>
self.productPrefix self.productPrefix
} }
object NlpMode { object NlpMode {
case object Full extends NlpMode case object Full extends NlpMode
case object Basic extends NlpMode case object Basic extends NlpMode
case object Disabled extends NlpMode case object RegexOnly extends NlpMode
case object Disabled extends NlpMode
def fromString(name: String): Either[String, NlpMode] = def fromString(name: String): Either[String, NlpMode] =
name.toLowerCase match { name.toLowerCase match {
case "full" => Right(Full) case "full" => Right(Full)
case "basic" => Right(Basic) case "basic" => Right(Basic)
case "disabled" => Right(Disabled) case "regexonly" => Right(RegexOnly)
case _ => Left(s"Unknown nlp-mode: $name") case "disabled" => Right(Disabled)
case _ => Left(s"Unknown nlp-mode: $name")
} }
def unsafeFromString(name: String): NlpMode = def unsafeFromString(name: String): NlpMode =

View File

@ -0,0 +1,20 @@
package docspell.common.syntax
import java.nio.file.Path
trait FileSyntax {
implicit final class PathOps(p: Path) {
def absolutePath: Path =
p.normalize().toAbsolutePath
def absolutePathAsString: String =
absolutePath.toString
def /(next: String): Path =
p.resolve(next)
}
}
object FileSyntax extends FileSyntax

View File

@ -2,6 +2,11 @@ package docspell.common
package object syntax { package object syntax {
object all extends EitherSyntax with StreamSyntax with StringSyntax with LoggerSyntax object all
extends EitherSyntax
with StreamSyntax
with StringSyntax
with LoggerSyntax
with FileSyntax
} }

View File

@ -0,0 +1,13 @@
Pontremoli, 9 aprile 2013
Spettabile Villa Albicocca
Via Francigena, 9
55100 Pontetetto (LU)
Oggetto: Prenotazione
Gentile Direttore,
Vorrei prenotare una camera matrimoniale …….
In attesa di una Sua pronta risposta, La saluto cordialmente

View File

@ -24,6 +24,7 @@ object Field {
val content_de = Field("content_de") val content_de = Field("content_de")
val content_en = Field("content_en") val content_en = Field("content_en")
val content_fr = Field("content_fr") val content_fr = Field("content_fr")
val content_it = Field("content_it")
val itemName = Field("itemName") val itemName = Field("itemName")
val itemNotes = Field("itemNotes") val itemNotes = Field("itemNotes")
val folderId = Field("folder") val folderId = Field("folder")
@ -36,6 +37,8 @@ object Field {
Field.content_en Field.content_en
case Language.French => case Language.French =>
Field.content_fr Field.content_fr
case Language.Italian =>
Field.content_it
} }
implicit val jsonEncoder: Encoder[Field] = implicit val jsonEncoder: Encoder[Field] =

View File

@ -40,6 +40,7 @@ object SolrQuery {
Field.content_de, Field.content_de,
Field.content_en, Field.content_en,
Field.content_fr, Field.content_fr,
Field.content_it,
Field.itemName, Field.itemName,
Field.itemNotes, Field.itemNotes,
Field.attachmentName Field.attachmentName

View File

@ -63,6 +63,12 @@ object SolrSetup {
solrEngine, solrEngine,
"Index all from database", "Index all from database",
FtsMigration.Result.indexAll.pure[F] FtsMigration.Result.indexAll.pure[F]
),
FtsMigration[F](
7,
solrEngine,
"Add content_it field",
addContentItField.map(_ => FtsMigration.Result.reIndexAll)
) )
) )
@ -72,6 +78,9 @@ object SolrSetup {
def addContentFrField: F[Unit] = def addContentFrField: F[Unit] =
addTextField(Some(Language.French))(Field.content_fr) addTextField(Some(Language.French))(Field.content_fr)
def addContentItField: F[Unit] =
addTextField(Some(Language.Italian))(Field.content_it)
def setupCoreSchema: F[Unit] = { def setupCoreSchema: F[Unit] = {
val cmds0 = val cmds0 =
List( List(
@ -90,13 +99,15 @@ object SolrSetup {
) )
.traverse(addTextField(None)) .traverse(addTextField(None))
val cntLang = Language.all.traverse { val cntLang = List(Language.German, Language.English, Language.French).traverse {
case l @ Language.German => case l @ Language.German =>
addTextField(l.some)(Field.content_de) addTextField(l.some)(Field.content_de)
case l @ Language.English => case l @ Language.English =>
addTextField(l.some)(Field.content_en) addTextField(l.some)(Field.content_en)
case l @ Language.French => case l @ Language.French =>
addTextField(l.some)(Field.content_fr) addTextField(l.some)(Field.content_fr)
case _ =>
().pure[F]
} }
cmds0 *> cmds1 *> cntLang *> ().pure[F] cmds0 *> cmds1 *> cntLang *> ().pure[F]
@ -125,6 +136,9 @@ object SolrSetup {
case Some(Language.French) => case Some(Language.French) =>
run(DeleteField.command(DeleteField(field))).attempt *> run(DeleteField.command(DeleteField(field))).attempt *>
run(AddField.command(AddField.textFR(field))) run(AddField.command(AddField.textFR(field)))
case Some(Language.Italian) =>
run(DeleteField.command(DeleteField(field))).attempt *>
run(AddField.command(AddField.textIT(field)))
} }
} }
} }
@ -161,6 +175,9 @@ object SolrSetup {
def textFR(field: Field): AddField = def textFR(field: Field): AddField =
AddField(field, "text_fr", true, true, false) AddField(field, "text_fr", true, true, false)
def textIT(field: Field): AddField =
AddField(field, "text_it", true, true, false)
} }
case class DeleteField(name: Field) case class DeleteField(name: Field)

View File

@ -277,7 +277,39 @@ docspell.joex {
# files. # files.
working-dir = ${java.io.tmpdir}"/docspell-analysis" working-dir = ${java.io.tmpdir}"/docspell-analysis"
nlp-config { nlp {
# The mode for configuring NLP models:
#
# 1. full builds the complete pipeline
# 2. basic - builds only the ner annotator
# 3. regexonly - matches each entry in your address book via regexps
# 4. disabled - doesn't use any stanford-nlp feature
#
# The full and basic variants rely on pre-build language models
# that are available for only 3 lanugages at the moment: German,
# English and French.
#
# Memory usage varies greatly among the languages. German has
# quite large models, that require about 1G heap. So joex should
# run with -Xmx1500M at least when using mode=full.
#
# The basic variant does a quite good job for German and
# English. It might be worse for French, always depending on the
# type of text that is analysed. Joex should run with about 600M
# heap, here again lanugage German uses the most.
#
# The regexonly variant doesn't depend on a language. It roughly
# works by converting all entries in your addressbook into
# regexps and matches each one against the text. This can get
# memory intensive, too, when the addressbook grows large. This
# is included in the full and basic by default, but can be used
# independently by setting mode=regexner.
#
# When mode=disabled, then the whole nlp pipeline is disabled,
# and you won't get any suggestions. Only what the classifier
# returns (if enabled).
mode = full
# The StanfordCoreNLP library caches language models which # The StanfordCoreNLP library caches language models which
# requires quite some amount of memory. Setting this interval to a # requires quite some amount of memory. Setting this interval to a
# positive duration, the cache is cleared after this amount of # positive duration, the cache is cleared after this amount of
@ -287,37 +319,28 @@ docspell.joex {
# This has only any effect, if mode != disabled. # This has only any effect, if mode != disabled.
clear-interval = "15 minutes" clear-interval = "15 minutes"
# The mode for configuring NLP models. Currently 3 are available: regex-ner {
# # Whether to enable custom NER annotation. This uses the
# 1. full builds the complete pipeline, run with -Xmx1500M or more # address book of a collective as input for NER tagging (to
# 2. basic - builds only the ner annotator, run with -Xmx600M or more # automatically find correspondent and concerned entities). If
# 3. disabled - doesn't use any stanford-nlp feature # the address book is large, this can be quite memory
# # intensive and also makes text analysis much slower. But it
# The basic variant does a quite good job for German and # improves accuracy and can be used independent of the
# English. It might be worse for French, always depending on the # lanugage. If this is set to 0, it is effectively disabled
# type of text that is analysed. # and NER tagging uses only statistical models (that also work
mode = full # quite well, but are restricted to the languages mentioned
} # above).
#
# Note, this is only relevant if nlp-config.mode is not
# "disabled".
max-entries = 1000
regex-ner { # The NER annotation uses a file of patterns that is derived
# Whether to enable custom NER annotation. This uses the address # from a collective's address book. This is is the time how
# book of a collective as input for NER tagging (to automatically # long this data will be kept until a check for a state change
# find correspondent and concerned entities). If the address book # is done.
# is large, this can be quite memory intensive and also makes text file-cache-time = "1 minute"
# analysis slower. But it greatly improves accuracy. If this is }
# false, NER tagging uses only statistical models (that also work
# quite well).
#
# This setting might be moved to the collective settings in the
# future.
#
# Note, this is only relevant if nlp-config.mode = full.
enabled = true
# The NER annotation uses a file of patterns that is derived from
# a collective's address book. This is is the time how long this
# file will be kept until a check for a state change is done.
file-cache-time = "1 minute"
} }
# Settings for doing document classification. # Settings for doing document classification.

View File

@ -60,15 +60,14 @@ object Config {
case class TextAnalysis( case class TextAnalysis(
maxLength: Int, maxLength: Int,
workingDir: Path, workingDir: Path,
nlpConfig: TextAnalysisConfig.NlpConfig, nlp: NlpConfig,
regexNer: RegexNer,
classification: Classification classification: Classification
) { ) {
def textAnalysisConfig: TextAnalysisConfig = def textAnalysisConfig: TextAnalysisConfig =
TextAnalysisConfig( TextAnalysisConfig(
maxLength, maxLength,
nlpConfig, TextAnalysisConfig.NlpConfig(nlp.clearInterval, nlp.mode),
TextClassifierConfig( TextClassifierConfig(
workingDir, workingDir,
NonEmptyList NonEmptyList
@ -78,10 +77,16 @@ object Config {
) )
def regexNerFileConfig: RegexNerFile.Config = def regexNerFileConfig: RegexNerFile.Config =
RegexNerFile.Config(regexNer.enabled, workingDir, regexNer.fileCacheTime) RegexNerFile.Config(
nlp.regexNer.maxEntries,
workingDir,
nlp.regexNer.fileCacheTime
)
} }
case class RegexNer(enabled: Boolean, fileCacheTime: Duration) case class NlpConfig(mode: NlpMode, clearInterval: Duration, regexNer: RegexNer)
case class RegexNer(maxEntries: Int, fileCacheTime: Duration)
case class Classification( case class Classification(
enabled: Boolean, enabled: Boolean,

View File

@ -29,7 +29,7 @@ trait RegexNerFile[F[_]] {
object RegexNerFile { object RegexNerFile {
private[this] val logger = getLogger private[this] val logger = getLogger
case class Config(enabled: Boolean, directory: Path, minTime: Duration) case class Config(maxEntries: Int, directory: Path, minTime: Duration)
def apply[F[_]: Concurrent: ContextShift]( def apply[F[_]: Concurrent: ContextShift](
cfg: Config, cfg: Config,
@ -49,7 +49,7 @@ object RegexNerFile {
) extends RegexNerFile[F] { ) extends RegexNerFile[F] {
def makeFile(collective: Ident): F[Option[Path]] = def makeFile(collective: Ident): F[Option[Path]] =
if (cfg.enabled) doMakeFile(collective) if (cfg.maxEntries > 0) doMakeFile(collective)
else (None: Option[Path]).pure[F] else (None: Option[Path]).pure[F]
def doMakeFile(collective: Ident): F[Option[Path]] = def doMakeFile(collective: Ident): F[Option[Path]] =
@ -127,7 +127,7 @@ object RegexNerFile {
for { for {
_ <- logger.finfo(s"Generating custom NER file for collective '${collective.id}'") _ <- logger.finfo(s"Generating custom NER file for collective '${collective.id}'")
names <- store.transact(QCollective.allNames(collective)) names <- store.transact(QCollective.allNames(collective, cfg.maxEntries))
nerFile = NerFile(collective, lastUpdate, now) nerFile = NerFile(collective, lastUpdate, now)
_ <- update(nerFile, NerFile.mkNerConfig(names)) _ <- update(nerFile, NerFile.mkNerConfig(names))
} yield nerFile } yield nerFile

View File

@ -4,9 +4,8 @@ import cats.data.OptionT
import cats.effect._ import cats.effect._
import cats.implicits._ import cats.implicits._
import docspell.analysis.TextAnalyser
import docspell.analysis.classifier.{ClassifierModel, TextClassifier} import docspell.analysis.classifier.{ClassifierModel, TextClassifier}
import docspell.analysis.nlp.StanfordNerSettings import docspell.analysis.{NlpSettings, TextAnalyser}
import docspell.common._ import docspell.common._
import docspell.joex.Config import docspell.joex.Config
import docspell.joex.analysis.RegexNerFile import docspell.joex.analysis.RegexNerFile
@ -54,7 +53,7 @@ object TextAnalysis {
analyser: TextAnalyser[F], analyser: TextAnalyser[F],
nerFile: RegexNerFile[F] nerFile: RegexNerFile[F]
)(rm: RAttachmentMeta): F[(RAttachmentMeta, AttachmentDates)] = { )(rm: RAttachmentMeta): F[(RAttachmentMeta, AttachmentDates)] = {
val settings = StanfordNerSettings(ctx.args.meta.language, false, None) val settings = NlpSettings(ctx.args.meta.language, false, None)
for { for {
customNer <- nerFile.makeFile(ctx.args.meta.collective) customNer <- nerFile.makeFile(ctx.args.meta.collective)
sett = settings.copy(regexNer = customNer) sett = settings.copy(regexNer = customNer)

View File

@ -1,10 +1,8 @@
package docspell.store.queries package docspell.store.queries
import cats.data.OptionT
import fs2.Stream import fs2.Stream
import docspell.common.ContactKind import docspell.common._
import docspell.common.{Direction, Ident}
import docspell.store.qb.DSL._ import docspell.store.qb.DSL._
import docspell.store.qb._ import docspell.store.qb._
import docspell.store.records._ import docspell.store.records._
@ -17,6 +15,7 @@ object QCollective {
private val t = RTag.as("t") private val t = RTag.as("t")
private val ro = ROrganization.as("o") private val ro = ROrganization.as("o")
private val rp = RPerson.as("p") private val rp = RPerson.as("p")
private val re = REquipment.as("e")
private val rc = RContact.as("c") private val rc = RContact.as("c")
private val i = RItem.as("i") private val i = RItem.as("i")
@ -25,13 +24,37 @@ object QCollective {
val empty = Names(Vector.empty, Vector.empty, Vector.empty) val empty = Names(Vector.empty, Vector.empty, Vector.empty)
} }
def allNames(collective: Ident): ConnectionIO[Names] = def allNames(collective: Ident, maxEntries: Int): ConnectionIO[Names] = {
(for { val created = Column[Timestamp]("created", TableDef(""))
orgs <- OptionT.liftF(ROrganization.findAllRef(collective, None, _.name)) union(
pers <- OptionT.liftF(RPerson.findAllRef(collective, None, _.name)) Select(
equp <- OptionT.liftF(REquipment.findAll(collective, None, _.name)) select(ro.name.s, lit(1).as("kind"), ro.created.as(created)),
} yield Names(orgs.map(_.name), pers.map(_.name), equp.map(_.name))) from(ro),
.getOrElse(Names.empty) ro.cid === collective
),
Select(
select(rp.name.s, lit(2).as("kind"), rp.created.as(created)),
from(rp),
rp.cid === collective
),
Select(
select(re.name.s, lit(3).as("kind"), re.created.as(created)),
from(re),
re.cid === collective
)
).orderBy(created.desc)
.limit(Batch.limit(maxEntries))
.build
.query[(String, Int)]
.streamWithChunkSize(maxEntries)
.fold(Names.empty) { case (names, (name, kind)) =>
if (kind == 1) names.copy(org = names.org :+ name)
else if (kind == 2) names.copy(pers = names.pers :+ name)
else names.copy(equip = names.equip :+ name)
}
.compile
.lastOrError
}
case class InsightData( case class InsightData(
incoming: Int, incoming: Int,

View File

@ -11,6 +11,7 @@ type Language
= German = German
| English | English
| French | French
| Italian
fromString : String -> Maybe Language fromString : String -> Maybe Language
@ -24,6 +25,8 @@ fromString str =
else if str == "fra" || str == "fr" || str == "french" then else if str == "fra" || str == "fr" || str == "french" then
Just French Just French
else if str == "ita" || str == "it" || str == "italian" then
Just Italian
else else
Nothing Nothing
@ -40,6 +43,9 @@ toIso3 lang =
French -> French ->
"fra" "fra"
Italian ->
"ita"
toName : Language -> String toName : Language -> String
toName lang = toName lang =
@ -53,7 +59,10 @@ toName lang =
French -> French ->
"French" "French"
Italian ->
"Italian"
all : List Language all : List Language
all = all =
[ German, English, French ] [ German, English, French, Italian ]

View File

@ -98,9 +98,13 @@ let
}; };
text-analysis = { text-analysis = {
max-length = 10000; max-length = 10000;
regex-ner = { nlp = {
enabled = true; mode = "full";
file-cache-time = "1 minute"; clear-interval = "15 minutes";
regex-ner = {
max-entries = 1000;
file-cache-time = "1 minute";
};
}; };
classification = { classification = {
enabled = true; enabled = true;
@ -118,7 +122,6 @@ let
]; ];
}; };
working-dir = "/tmp/docspell-analysis"; working-dir = "/tmp/docspell-analysis";
clear-stanford-nlp-interval = "15 minutes";
}; };
processing = { processing = {
max-due-date-years = 10; max-due-date-years = 10;
@ -772,47 +775,96 @@ in {
files. files.
''; '';
}; };
clear-stanford-nlp-interval = mkOption {
type = types.str;
default = defaults.text-analysis.clear-stanford-nlp-interval;
description = ''
Idle time after which the NLP caches are cleared to free
memory. If <= 0 clearing the cache is disabled.
'';
};
regex-ner = mkOption { nlp = mkOption {
type = types.submodule({ type = types.submodule({
options = { options = {
enabled = mkOption { mode = mkOption {
type = types.bool; type = types.str;
default = defaults.text-analysis.regex-ner.enabled; default = defaults.text-analysis.nlp.mode;
description = '' description = ''
Whether to enable custom NER annotation. This uses the address The mode for configuring NLP models:
book of a collective as input for NER tagging (to automatically
find correspondent and concerned entities). If the address book
is large, this can be quite memory intensive and also makes text
analysis slower. But it greatly improves accuracy. If this is
false, NER tagging uses only statistical models (that also work
quite well).
This setting might be moved to the collective settings in the 1. full builds the complete pipeline
future. 2. basic - builds only the ner annotator
3. regexonly - matches each entry in your address book via regexps
4. disabled - doesn't use any stanford-nlp feature
The full and basic variants rely on pre-build language models
that are available for only 3 lanugages at the moment: German,
English and French.
Memory usage varies greatly among the languages. German has
quite large models, that require about 1G heap. So joex should
run with -Xmx1500M at least when using mode=full.
The basic variant does a quite good job for German and
English. It might be worse for French, always depending on the
type of text that is analysed. Joex should run with about 600M
heap, here again lanugage German uses the most.
The regexonly variant doesn't depend on a language. It roughly
works by converting all entries in your addressbook into
regexps and matches each one against the text. This can get
memory intensive, too, when the addressbook grows large. This
is included in the full and basic by default, but can be used
independently by setting mode=regexner.
When mode=disabled, then the whole nlp pipeline is disabled,
and you won't get any suggestions. Only what the classifier
returns (if enabled).
''; '';
}; };
file-cache-time = mkOption {
clear-interval = mkOption {
type = types.str; type = types.str;
default = defaults.text-analysis.ner-file-cache-time; default = defaults.text-analysis.nlp.clear-interval;
description = '' description = ''
The NER annotation uses a file of patterns that is derived from Idle time after which the NLP caches are cleared to free
a collective's address book. This is is the time how long this memory. If <= 0 clearing the cache is disabled.
file will be kept until a check for a state change is done.
''; '';
}; };
regex-ner = mkOption {
type = types.submodule({
options = {
enabled = mkOption {
type = types.int;
default = defaults.text-analysis.regex-ner.max-entries;
description = ''
Whether to enable custom NER annotation. This uses the
address book of a collective as input for NER tagging (to
automatically find correspondent and concerned entities). If
the address book is large, this can be quite memory
intensive and also makes text analysis much slower. But it
improves accuracy and can be used independent of the
lanugage. If this is set to 0, it is effectively disabled
and NER tagging uses only statistical models (that also work
quite well, but are restricted to the languages mentioned
above).
Note, this is only relevant if nlp-config.mode is not
"disabled".
'';
};
file-cache-time = mkOption {
type = types.str;
default = defaults.text-analysis.ner-file-cache-time;
description = ''
The NER annotation uses a file of patterns that is derived from
a collective's address book. This is is the time how long this
file will be kept until a check for a state change is done.
'';
};
};
});
default = defaults.text-analysis.nlp.regex-ner;
description = "";
};
}; };
}); });
default = defaults.text-analysis.regex-ner; default = defaults.text-analysis.nlp;
description = ""; description = "Configure NLP";
}; };
classification = mkOption { classification = mkOption {