mirror of
https://github.com/TheAnachronism/docspell.git
synced 2025-03-26 09:05:06 +00:00
Updating stanford corenlp to 4.3.2; adding more languages
There are models for Spanish, that have been added now. Also the Hungarian language has been added to the list of supported languages (for tesseract mainly, no nlp models)
This commit is contained in:
parent
20fc9955ba
commit
501c6f2988
@ -45,15 +45,16 @@ object DateFind {
|
||||
private[this] val jpnChars =
|
||||
("年月日" + MonthName.getAll(Language.Japanese).map(_.mkString).mkString).toSet
|
||||
|
||||
private def splitWords(text: String, lang: Language): Stream[Pure, Word] = {
|
||||
private[date] def splitWords(text: String, lang: Language): Stream[Pure, Word] = {
|
||||
val stext =
|
||||
if (lang == Language.Japanese) {
|
||||
text.map(c => if (jpnChars.contains(c)) c else ' ')
|
||||
} else text
|
||||
|
||||
TextSplitter
|
||||
.splitToken(stext, " \t.,\n\r/年月日".toSet)
|
||||
.splitToken(stext, " -\t.,\n\r/年月日".toSet)
|
||||
.filter(w => lang != Language.Latvian || w.value != "gada")
|
||||
.filter(w => lang != Language.Spanish || w.value != "de")
|
||||
}
|
||||
|
||||
case class SimpleDate(year: Int, month: Int, day: Int) {
|
||||
@ -91,6 +92,7 @@ object DateFind {
|
||||
case Language.French => dmy.or(ymd).or(mdy)
|
||||
case Language.Italian => dmy.or(ymd).or(mdy)
|
||||
case Language.Spanish => dmy.or(ymd).or(mdy)
|
||||
case Language.Hungarian => ymd
|
||||
case Language.Czech => dmy.or(ymd).or(mdy)
|
||||
case Language.Danish => dmy.or(ymd).or(mdy)
|
||||
case Language.Finnish => dmy.or(ymd).or(mdy)
|
||||
|
@ -30,6 +30,8 @@ object MonthName {
|
||||
italian
|
||||
case Language.Spanish =>
|
||||
spanish
|
||||
case Language.Hungarian =>
|
||||
hungarian
|
||||
case Language.Swedish =>
|
||||
swedish
|
||||
case Language.Norwegian =>
|
||||
@ -324,4 +326,19 @@ object MonthName {
|
||||
List("11", "נובמבר"),
|
||||
List("12", "דצמבר")
|
||||
)
|
||||
|
||||
private val hungarian = List(
|
||||
List("I", "jan", "január"),
|
||||
List("II", "febr", "február"),
|
||||
List("III", "márc", "március"),
|
||||
List("IV", "ápr", "április"),
|
||||
List("V", "máj", "május"),
|
||||
List("VI", "jún", "június"),
|
||||
List("VII", "júl", "július"),
|
||||
List("VIII", "aug", "augusztus"),
|
||||
List("IX", "szept", "szeptember"),
|
||||
List("X", "okt", "október"),
|
||||
List("XI", "nov", "november"),
|
||||
List("XII", "dec", "december")
|
||||
)
|
||||
}
|
||||
|
@ -29,7 +29,7 @@ object BasicCRFAnnotator {
|
||||
private[this] val logger = getLogger
|
||||
|
||||
// assert correct resource names
|
||||
List(Language.French, Language.German, Language.English).foreach(classifierResource)
|
||||
NLPLanguage.all.toList.foreach(classifierResource)
|
||||
|
||||
type Annotator = AbstractSequenceClassifier[CoreLabel]
|
||||
|
||||
@ -70,6 +70,12 @@ object BasicCRFAnnotator {
|
||||
"/edu/stanford/nlp/models/ner/german.distsim.crf.ser.gz"
|
||||
case Language.English =>
|
||||
"/edu/stanford/nlp/models/ner/english.conll.4class.distsim.crf.ser.gz"
|
||||
case Language.Spanish =>
|
||||
"/edu/stanford/nlp/models/ner/spanish.ancora.distsim.s512.crf.ser.gz"
|
||||
// case Language.Italian =>
|
||||
// "/edu/stanford/nlp/models/ner/italian.crf.ser.gz"
|
||||
// case Language.Hungarian =>
|
||||
// "/edu/stanford/nlp/models/ner/hungarian.crf.ser.gz"
|
||||
})
|
||||
}
|
||||
|
||||
@ -77,12 +83,14 @@ object BasicCRFAnnotator {
|
||||
private[this] lazy val germanNerClassifier = makeAnnotator(Language.German)
|
||||
private[this] lazy val englishNerClassifier = makeAnnotator(Language.English)
|
||||
private[this] lazy val frenchNerClassifier = makeAnnotator(Language.French)
|
||||
private[this] lazy val spanishNerClassifier = makeAnnotator(Language.Spanish)
|
||||
|
||||
def forLang(language: NLPLanguage): Annotator =
|
||||
language match {
|
||||
case Language.French => frenchNerClassifier
|
||||
case Language.German => germanNerClassifier
|
||||
case Language.English => englishNerClassifier
|
||||
case Language.Spanish => spanishNerClassifier
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -37,6 +37,8 @@ object Properties {
|
||||
Properties.nerEnglish(regexNerFile)
|
||||
case Language.French =>
|
||||
Properties.nerFrench(regexNerFile, highRecall)
|
||||
case Language.Spanish =>
|
||||
Properties.nerSpanish(regexNerFile, highRecall)
|
||||
}
|
||||
case StanfordNerSettings.RegexOnly(path) =>
|
||||
Properties.regexNerOnly(path)
|
||||
@ -88,6 +90,18 @@ object Properties {
|
||||
"ner.model" -> "edu/stanford/nlp/models/ner/french-wikiner-4class.crf.ser.gz,edu/stanford/nlp/models/ner/english.conll.4class.distsim.crf.ser.gz"
|
||||
).withRegexNer(regexNerMappingFile).withHighRecall(highRecall)
|
||||
|
||||
def nerSpanish(regexNerMappingFile: Option[String], highRecall: Boolean): JProps =
|
||||
Properties(
|
||||
"annotators" -> "tokenize, ssplit, mwt, pos, lemma, ner",
|
||||
"tokenize.language" -> "es",
|
||||
"mwt.mappingFile" -> "edu/stanford/nlp/models/mwt/spanish/spanish-mwt.tsv",
|
||||
"pos.model" -> "edu/stanford/nlp/models/pos-tagger/spanish-ud.tagger",
|
||||
"ner.model" -> "edu/stanford/nlp/models/ner/spanish.ancora.distsim.s512.crf.ser.gz",
|
||||
"ner.applyNumericClassifiers" -> "true",
|
||||
"ner.useSUTime" -> "false",
|
||||
"ner.language" -> "es"
|
||||
).withRegexNer(regexNerMappingFile).withHighRecall(highRecall)
|
||||
|
||||
def regexNerOnly(regexNerMappingFile: Path): JProps =
|
||||
Properties(
|
||||
"annotators" -> "tokenize,ssplit"
|
||||
|
Binary file not shown.
@ -13,7 +13,7 @@ import docspell.files.TestFiles
|
||||
|
||||
import munit._
|
||||
|
||||
class DateFindSpec extends FunSuite {
|
||||
class DateFindTest extends FunSuite {
|
||||
|
||||
test("find simple dates") {
|
||||
val expect = Vector(
|
||||
@ -179,4 +179,29 @@ class DateFindSpec extends FunSuite {
|
||||
)
|
||||
}
|
||||
|
||||
test("find spanish dates") {
|
||||
assertEquals(
|
||||
DateFind
|
||||
.findDates("México, Distrito Federal a 15 de Diciembre de 2011", Language.Spanish)
|
||||
.toVector,
|
||||
Vector(
|
||||
NerDateLabel(
|
||||
LocalDate.of(2011, 12, 15),
|
||||
NerLabel("15 de Diciembre de 2011", NerTag.Date, 27, 50)
|
||||
)
|
||||
)
|
||||
)
|
||||
println(DateFind.splitWords("2021-11-19", Language.Spanish).toList)
|
||||
assertEquals(
|
||||
DateFind
|
||||
.findDates("2021-11-19", Language.Spanish)
|
||||
.toVector,
|
||||
Vector(
|
||||
NerDateLabel(
|
||||
LocalDate.of(2021, 11, 19),
|
||||
NerLabel("2021-11-19", NerTag.Date, 0, 10)
|
||||
)
|
||||
)
|
||||
)
|
||||
}
|
||||
}
|
@ -30,7 +30,7 @@ object Language {
|
||||
override val allowsNLP = true
|
||||
}
|
||||
object NLPLanguage {
|
||||
val all: NonEmptyList[NLPLanguage] = NonEmptyList.of(German, English, French)
|
||||
val all: NonEmptyList[NLPLanguage] = NonEmptyList.of(German, English, French, Spanish)
|
||||
}
|
||||
|
||||
case object German extends NLPLanguage {
|
||||
@ -53,11 +53,16 @@ object Language {
|
||||
val iso3 = "ita"
|
||||
}
|
||||
|
||||
case object Spanish extends Language {
|
||||
case object Spanish extends NLPLanguage {
|
||||
val iso2 = "es"
|
||||
val iso3 = "spa"
|
||||
}
|
||||
|
||||
case object Hungarian extends Language {
|
||||
val iso2 = "hu"
|
||||
val iso3 = "hun"
|
||||
}
|
||||
|
||||
case object Portuguese extends Language {
|
||||
val iso2 = "pt"
|
||||
val iso3 = "por"
|
||||
@ -125,6 +130,7 @@ object Language {
|
||||
French,
|
||||
Italian,
|
||||
Spanish,
|
||||
Hungarian,
|
||||
Dutch,
|
||||
Portuguese,
|
||||
Czech,
|
||||
|
@ -127,7 +127,13 @@ object SolrSetup {
|
||||
"Add hebrew content field",
|
||||
addContentField(Language.Hebrew)
|
||||
),
|
||||
SolrMigration.reIndexAll(18, "Re-Index after adding hebrew content field")
|
||||
SolrMigration.reIndexAll(18, "Re-Index after adding hebrew content field"),
|
||||
SolrMigration[F](
|
||||
19,
|
||||
"Add hungarian",
|
||||
addContentField(Language.Hungarian)
|
||||
),
|
||||
SolrMigration.reIndexAll(20, "Re-Index after adding hungarian content field")
|
||||
)
|
||||
|
||||
def addFolderField: F[Unit] =
|
||||
|
@ -18,11 +18,11 @@ import docspell.joex.Config
|
||||
import docspell.joex.analysis.RegexNerFile
|
||||
import docspell.joex.scheduler.Context
|
||||
import docspell.joex.scheduler.Task
|
||||
import docspell.store.queries.QItem
|
||||
import docspell.store.records.RAttachment
|
||||
import docspell.store.records.RAttachmentSource
|
||||
import docspell.store.records.RCollective
|
||||
import docspell.store.records.RItem
|
||||
import docspell.store.queries.QItem
|
||||
|
||||
object ReProcessItem {
|
||||
type Args = ReProcessItemArgs
|
||||
|
@ -0,0 +1,21 @@
|
||||
CREATE TEMPORARY TABLE "temp_file_ids" (
|
||||
cid varchar(254) not null,
|
||||
file_id varchar(254) not null
|
||||
);
|
||||
|
||||
INSERT INTO "temp_file_ids" SELECT "cid", "file_id" FROM "classifier_model";
|
||||
|
||||
INSERT INTO "job"
|
||||
SELECT md5(random()::text), 'learn-classifier', cid, '{"collective":"' || cid || '"}',
|
||||
'new classifier', now(), 'docspell-system', 0, 'waiting', 0, 0
|
||||
FROM "classifier_setting";
|
||||
|
||||
DELETE FROM "classifier_model";
|
||||
|
||||
DELETE FROM "filemeta"
|
||||
WHERE "file_id" in (SELECT "file_id" FROM "temp_file_ids");
|
||||
|
||||
DELETE FROM "filechunk"
|
||||
WHERE "file_id" in (SELECT "file_id" FROM "temp_file_ids");
|
||||
|
||||
DROP TABLE "temp_file_ids";
|
@ -31,6 +31,7 @@ type Language
|
||||
| Latvian
|
||||
| Japanese
|
||||
| Hebrew
|
||||
| Hungarian
|
||||
|
||||
|
||||
fromString : String -> Maybe Language
|
||||
@ -86,6 +87,9 @@ fromString str =
|
||||
else if str == "heb" || str == "he" || str == "hebrew" then
|
||||
Just Hebrew
|
||||
|
||||
else if str == "hun" || str == "hu" || str == "hungarian" then
|
||||
Just Hungarian
|
||||
|
||||
else
|
||||
Nothing
|
||||
|
||||
@ -144,6 +148,9 @@ toIso3 lang =
|
||||
Hebrew ->
|
||||
"heb"
|
||||
|
||||
Hungarian ->
|
||||
"hun"
|
||||
|
||||
|
||||
all : List Language
|
||||
all =
|
||||
@ -164,4 +171,5 @@ all =
|
||||
, Latvian
|
||||
, Japanese
|
||||
, Hebrew
|
||||
, Hungarian
|
||||
]
|
||||
|
@ -67,6 +67,9 @@ gb lang =
|
||||
Hebrew ->
|
||||
"Hebrew"
|
||||
|
||||
Hungarian ->
|
||||
"Hungarian"
|
||||
|
||||
|
||||
de : Language -> String
|
||||
de lang =
|
||||
@ -121,3 +124,6 @@ de lang =
|
||||
|
||||
Hebrew ->
|
||||
"Hebräisch"
|
||||
|
||||
Hungarian ->
|
||||
"Ungarisch"
|
||||
|
@ -914,7 +914,7 @@ in {
|
||||
|
||||
The full and basic variants rely on pre-build language models
|
||||
that are available for only 3 lanugages at the moment: German,
|
||||
English and French.
|
||||
English, French and Spanish.
|
||||
|
||||
Memory usage varies greatly among the languages. German has
|
||||
quite large models, that require about 1G heap. So joex should
|
||||
|
@ -40,7 +40,7 @@ object Dependencies {
|
||||
val ScalaJavaTimeVersion = "2.3.0"
|
||||
val ScodecBitsVersion = "1.1.29"
|
||||
val Slf4jVersion = "1.7.32"
|
||||
val StanfordNlpVersion = "4.2.2"
|
||||
val StanfordNlpVersion = "4.3.2"
|
||||
val TikaVersion = "2.1.0"
|
||||
val YamuscaVersion = "0.8.1"
|
||||
val SwaggerUIVersion = "4.1.0"
|
||||
@ -185,18 +185,16 @@ object Dependencies {
|
||||
)
|
||||
)
|
||||
|
||||
val stanfordNlpModels = Seq(
|
||||
("edu.stanford.nlp" % "stanford-corenlp" % StanfordNlpVersion)
|
||||
.classifier("models"),
|
||||
("edu.stanford.nlp" % "stanford-corenlp" % StanfordNlpVersion)
|
||||
.classifier("models-german"),
|
||||
("edu.stanford.nlp" % "stanford-corenlp" % StanfordNlpVersion)
|
||||
.classifier("models-french"),
|
||||
("edu.stanford.nlp" % "stanford-corenlp" % StanfordNlpVersion)
|
||||
.classifier(
|
||||
"models-english"
|
||||
)
|
||||
)
|
||||
val stanfordNlpModels = {
|
||||
val artifact = "edu.stanford.nlp" % "stanford-corenlp" % StanfordNlpVersion
|
||||
Seq(
|
||||
artifact.classifier("models"),
|
||||
artifact.classifier("models-german"),
|
||||
artifact.classifier("models-french"),
|
||||
artifact.classifier("models-english"),
|
||||
artifact.classifier("models-spanish")
|
||||
)
|
||||
}
|
||||
|
||||
val tika = Seq(
|
||||
"org.apache.tika" % "tika-core" % TikaVersion
|
||||
|
@ -67,18 +67,29 @@ object NerModelsPlugin extends AutoPlugin {
|
||||
}
|
||||
|
||||
private val nerModels = List(
|
||||
"german.distsim.crf.ser.gz",
|
||||
// English
|
||||
"english.conll.4class.distsim.crf.ser.gz",
|
||||
"regexner_caseless.tab",
|
||||
"regexner_cased.tab",
|
||||
"english-left3words-distsim.tagger",
|
||||
"english-left3words-distsim.tagger.props",
|
||||
// German
|
||||
"german.distsim.crf.ser.gz",
|
||||
"german-mwt.tsv",
|
||||
"german-ud.tagger",
|
||||
"german-ud.tagger.props",
|
||||
// French
|
||||
"french-wikiner-4class.crf.ser.gz",
|
||||
"french-mwt-statistical.tsv",
|
||||
"french-mwt.tagger",
|
||||
"french-mwt.tsv",
|
||||
"german-mwt.tsv",
|
||||
"german-ud.tagger",
|
||||
"german-ud.tagger.props",
|
||||
"french-ud.tagger",
|
||||
"french-ud.tagger.props",
|
||||
"english-left3words-distsim.tagger",
|
||||
"english-left3words-distsim.tagger.props"
|
||||
// Spanish
|
||||
"spanish.ancora.distsim.s512.crf.ser.gz",
|
||||
"spanish-mwt.tsv",
|
||||
"spanish-ud.tagger",
|
||||
"kbp_regexner_number_sp.tag",
|
||||
"kbp_regexner_mapping_sp.tag"
|
||||
)
|
||||
}
|
||||
|
@ -486,8 +486,8 @@ This setting defines which NLP mode to use. It defaults to `full`,
|
||||
which requires more memory for certain languages (with the advantage
|
||||
of better results). Other values are `basic`, `regexonly` and
|
||||
`disabled`. The modes `full` and `basic` use pre-defined lanugage
|
||||
models for procesing documents of languaes German, English and French.
|
||||
These require some amount of memory (see below).
|
||||
models for procesing documents of languaes German, English, French and
|
||||
Spanish. These require some amount of memory (see below).
|
||||
|
||||
The mode `basic` is like the "light" variant to `full`. It doesn't use
|
||||
all NLP features, which makes memory consumption much lower, but comes
|
||||
|
@ -8,10 +8,10 @@ mktoc = true
|
||||
+++
|
||||
|
||||
When uploading a file, it is only saved to the database together with
|
||||
the given meta information. The file is not visible in the ui yet.
|
||||
Then joex takes the next such file (or files in case you uploaded
|
||||
many) and starts processing it. When processing finished, the item and
|
||||
its files will show up in the ui.
|
||||
the given meta information as a "job". The file is not visible in the
|
||||
ui yet. Then joex takes the next such job and starts processing it.
|
||||
When processing finished, the item and its files will show up in the
|
||||
ui.
|
||||
|
||||
If an error occurs during processing, the item will be created
|
||||
anyways, so you can see it. Depending on the error, some information
|
||||
@ -400,7 +400,7 @@ names etc. This also requires a statistical model, but this time for a
|
||||
whole language. These are also provided by [Stanford
|
||||
NLP](https://nlp.stanford.edu/software/), but not for all languages.
|
||||
So whether this can be used depends on the document language. Models
|
||||
exist for German, English and French currently.
|
||||
exist for German, English, French and Spanish currently.
|
||||
|
||||
Then [Stanford NLP](https://nlp.stanford.edu/software/) also allows to
|
||||
run custom rules against a text. This can be used as a fallback for
|
||||
|
@ -147,11 +147,11 @@ experience. The features of text analysis strongly depend on the
|
||||
language. Docspell uses the [Stanford NLP
|
||||
Library](https://nlp.stanford.edu/software/) for its great machine
|
||||
learning algorithms. Some of them, like certain NLP features, are only
|
||||
available for some languages – namely German, English and French. The
|
||||
reason is that the required statistical models are not available for
|
||||
other languages. However, docspell can still run other algorithms for
|
||||
the other languages, like classification and custom rules based on the
|
||||
address book.
|
||||
available for some languages – namely German, English, French and
|
||||
Spanish. The reason is that the required statistical models are not
|
||||
available for other languages. However, docspell can still run other
|
||||
algorithms for the other languages, like classification and custom
|
||||
rules based on the address book.
|
||||
|
||||
More information about file processing and text analysis can be found
|
||||
[here](@/docs/joex/file-processing.md#text-analysis).
|
||||
|
Loading…
x
Reference in New Issue
Block a user